jueves, 2 de junio de 2016

TEORÍAS SOBRE EL ORIGEN, MOVIMIENTO DE LOS PLANETAS Y DATOS SOBRE NUESTRO SISTEMA SOLAR

TEORÍAS SOBRE EL ORIGEN





A pesar de sus diferencias, los miembros del Sistema Solar forman probablemente una familia común; parece ser que se originaron al mismo tiempo.

Entre los primeros intentos de explicar el origen de este sistema está la hipótesis nebular del filósofo alemán Immanuel Kant y del astrónomo y matemático francés Pierre Simon de Laplace. (imagen) De acuerdo con dicha teoría una nube de gas se fragmentó en anillos que se condensaron formando los planetas. Las dudas sobre la estabilidad de dichos anillos han llevado a algunos científicos a considerar algunas hipótesis de catástrofes como la de un encuentro violento entre el Sol y otra estrella. Estos encuentros son muy raros, y los gases calientes, desorganizados por las mareas se dispersarían en lugar de condensarse para formar los planetas.

Las teorías actuales conectan la formación del Sistema Solar con la formación del Sol, ocurrida hace 4.700 millones de años. La fragmentación y el colapso gravitacional de una nube interestelar de gas y polvo, provocada quizá por las explosiones de una supernova cercana, puede haber conducido a la formación de una nebulosa solar primordial. El Sol se habría formado entonces en la región central, más densa. La temperatura es tan alta cerca del Sol que incluso los silicatos, relativamente densos, tienen dificultad para formarse allí.

Este fenómeno puede explicar la presencia cercana al Sol de un planeta como Mercurio, que tiene una envoltura de silicatos pequeña y un núcleo de hierro denso mayor de lo usual. (Es más fácil para el polvo y vapor de hierro aglutinarse cerca de la región central de una nebulosa solar que para los silicatos más ligeros.) A grandes distancias del centro de la nebulosa solar, los gases se condensan en sólidos como los que se encuentran hoy en la parte externa de Júpiter.


La evidencia de una posible explosión de supernova de formación previa aparece en forma de trazas de isótopos anómalos en las pequeñas inclusiones de algunos meteoritos. Esta asociación de la formación de planetas con la formación de estrellas sugiere que miles de millones de otras estrellas de nuestra galaxia también pueden tener planetas. La abundancia de estrellas múltiples y binarias, así como de grandes sistemas de satélites alrededor de Júpiter y Saturno, atestiguan la tendencia de la nubes de gas a desintegrarse fragmentándose en sistemas de cuerpos múltiples.


EL MOVIMIENTO DE LOS PLANETAS


Las Leyes de Kepler

En la Edad Media se utilizaba el antiguo modelo geocéntrico para predecir la posición de las estrellas y los planetas en el cielo, incluidos el Sol y la Luna. Sin embargo, era evidente que las predicciones no eran buenas más allá de unos pocos días. Los intentos por construir modelos basados en combinaciones complicadas de movimientos circulares mejoraron algo la situación pero distaba de ser satisfactoria. A pesar de todo, el modelo geocéntrico seguía siendo la regla principalmente porque era el modelo adoptado, por razones filosóficas, por la Iglesia Católica.

Nicolás Copérnico propuso un modelo del Universo que para la época era una lisa y llana herejía: la Tierra y los planetas giran alrededor del Sol en órbitas circulares. Este modelo lograba predecir con mayor precisión los cambios aparentes en la esfera celeste y de una manera matemáticamente mucho más simple, lo cual resultó muy atractivo para la navegación. Copérnico no pudo aportar evidencia observacional de la validez de su teoría, de modo que para la Iglesia se trataba de una simple herramienta de cálculo. Ya sea por este motivo o las obvias ventajas económicas de contar con tablas más simples y precisas, lo cierto es que Copérnico no terminó en la hoguera como el primero en proponer un modelo heliocéntrico: Giordano Bruno.

Galileo Galilei, un italiano cuya pasión por la física era rivalizada sólo por su afición por la buena mesa, enterado de la reciente invención del telescopio, se fabricó rápidamente uno y lo dirigió hacia el cielo. Entre las muchas cosas que vio, descubrió que el planeta Júpiter estaba cortejado por cuatro pequeñas estrellas, a las que llamó estrellas de Médici, en honor al Duque que lo auspiciaba económicamente. Un seguimiento rutinario lo convenció de que las cuatro estrellas no eran sino lunas que orbitaban en torno a Júpiter como la Luna alrededor de la Tierra. Su descubrimiento fue severamente criticado por la Iglesia pero el golpe mortal hacia la teoría heliocéntrica había sido dado: no todo en el Universo giraba alrededor de la Tierra. Era cuestión de tiempo hasta que el heliocentrismo pasara de ser una teoría conveniente a una teoría aceptada como correcta.

A pesar de todo, aunque más simples, las predicciones seguían siendo erróneas. Evidentemente algo no andaba bien con el modelo. Y no se podía decir que las observaciones estuvieran mal hechas. Tycho Brahe era, al igual que Galileo, aficionado a la Astronomía, al buen comer y al mejor vino. Afortunadamente, tenía por costumbre observar en estado de perfecta sobriedad y era muy bueno en lo suyo, aún sin contar con el telescopio, que no aparecería sino hasta unos años después.

Tras la muerte de Tycho, uno de sus discípulos, Johannes Kepler, logró con no poco esfuerzo, recuperar de la familia las notas observacionales para estudiarlas. Kepler contaba entonces con el mejor conjunto de observaciones de Marte de la época, el que usó para deducir sus famosas tres leyes descriptivas del movimiento orbital del planeta rojo.

La Leyes de Kepler (ver explicación detallada en este sitio)

Primera Ley:      Los planetas se mueven en órbitas elípticas con el Sol en uno de los focos.
Segunda Ley:    El radio vector Sol-Planeta barre áreas iguales en tiempos iguales.
Tercera Ley:       El cubo del semieje mayor es proporcional al cuadrado del período orbital.
La Primera Ley: De la primera ley, deducimos que la distancia de un planeta al Sol varía continuamente a lo largo de la órbita. La figura de arriba muestra las características de la elipse. El Sol está en el foco F. El punto de distancia mínima se denomina perihelio, y el de máxima se llama afelio. El semieje mayor, indicado por aen la figura, es promedio de ambos. La distancia del foco al centro de la elipse (el segmento OF), indica el grado de apartamiento de la forma esférica, y su valor en términos del semieje mayor se llama “eccentricidad” de la elipse:

e = OF / a

En la figura vemos que la distancia al perihelio

dp = a .(1 – e)

mientras que al afelio

da = a.(1+e)

La Tierra, por ejemplo, está dos millones y medio de kilómetros más cerca del Sol en el perihelio que en el afelio. ¿Te animas a calcularlo?

La Segunda Ley: No sólo las distancias son variables, sino también la velocidad de los planetas en sus órbitas. Debido a que el momento angular debe conservarse (mantenerse constante), un planeta debe moverse más rápido cuando está cerca del Sol (perihelio), que cuando está en el afelio.

La Tercera Ley: También conocida como Ley Armónica, fue resultado de un esfuerzo de Kepler por encontrar algún tipo de regularidad en la mecánica del Universo. En este caso, encontró que el período orbital de un planeta (tiempo que demora en dar una vuelta en torno al Sol), está vinculado a su distancia promedio al Sol (es decir, el semieje mayor de la órbita), de modo que:

a3 = k. P2

La constante de proporcionalidad k dependerá de las unidades utilizadas. Por ejemplo, si el período se expresa en segundos y la distancia a en km, usando los valores para la Tierra, obtenemos

k = 3,4×109 km3/seg2

Lo cual no es evidentemente muy cómodo de recordar. Sin embargo, si expresamos a en unidades astronómicas y P en años, para la Tierra resulta:

k = 1 UA3/año2. De modo que para cualquier planeta, la 3ra. Ley se convierte sencillamente en

a3=P2  donde a está en UA y P en años.

Ejemplo: la distancia promedio de Neptuno al Sol es de 4.515 millones de kilómetros. Hallar su período orbital

Ampliar: Sobre La Leyes de Kepler

 TABLA CON DATOS SOBRE LOS PLANETAS

 


DATOS CURIOSOS SOBRE NUESTROS SISTEMA SOLAR


Se estima que existen unos 14.000.000.000 de estrellas semejantes al Sol, en nuestra galaxia.

Las estrellas producen energía, casi siempre, por fusión nuclear. Por ejemplo, en la estrella más cercana, el Sol, los núcleos de Hidrógeno se unen formando Helio y liberando energía, consumiendo unos 700 millones de toneladas de Hidrógeno por segundo. Esta fusión se produce en el interior de la estrella y la energía se desplaza lentamente hasta su superficie, hasta que es liberada en forma de luz.

El Sol empezó a quemar Hidrógeno hace unos 4600 millones de años y actualmente está en la mitad de su ciclo de vida. Antes de morir, el Sol se convertirá en una gigante roja y posteriormente en una enana blanca. Igual que el Sol, morirán todas las estrellas y morirán todas las que aún no han nacido. Finalmente, llegará un momento en el que no existan estrellas. El Sol tiene un diámetro, en el ecuador, de 1.391.980 Km., una masa de 330.000 veces la de la Tierra, una gravedad 27,9 veces la de la Tierra y una densidad media de 1,41 (la del agua es 1).

El Sol no está donde lo vemos. Efectivamente, la luz del Sol tarda unos 8,3 minutos en llegar desde el Sol hasta la Tierra, por lo que siempre vemos el Sol donde estaba hace unos 8,3 minutos. Este desfase es mucho más pronunciado en otras estrellas, ya que la luz de otras estrellas tarda mucho más en llegar a la Tierra que la del Sol. Por ejemplo, la luz de la estrella Proxima Centauri, la más cercana a la Tierra (después del Sol), tarda 4,3 años, la estrella más brillante, Sirio A, está a 8,6 años luz y las estrellas de la constelación de Orión están entre 70 y 2.300 años luz.

El Diagrama H-R fue creado en 1905 por el astrónomo norteamericano Henry Russell y el astrónomo noruego Ejnar Hertzsprung. En este diagrama, se representa en un eje vertical el brillo (o luminosidad) de las estrellas y en un eje horizontal la temperatura (o color) de las estrellas. Así, cada estrella se representa como un punto en este diagrama. Representando así a las estrellas se observa que la mayoría de las estrellas cumplen que a mayor temperatura mayor luminosidad. Las estrellas así, como el Sol, se conocen como estrellas de la secuencia principal. También existen estrellas que son frías pero tienen una gran luminosidad y son llamadas “gigantes rojas” y estrellas que son muy calientes pero tienen una luminosidad muy pobre y son llamadas “enanas blancas”.

Las misiones Voyager I y II fueron lanzadas en Agosto y Septiembre de 1977 aprovechando una rara alineación de los planetas que permitía visitar muchos planetas de un sólo viaje. El Voyager I visitó Júpiter en 1979 y Saturno en 1980-81 igual que el Voyager II quien además visitó Neptuno en agosto de 1989. Ambos mandaron a la tierra unos 5 billones de bits de datos (incluyendo unas 100.000 fotos). El Voyager II pasará junto a la estrella Barnard en el año 8571 y junto a Sirio (la estrella más brillante de nuestro cielo nocturno) en el año 296036.

Los asteroides (o planetoides) son como pequeños planetas que giran alrededor del Sol. Más del 95% de ellos giran en unas órbitas situadas entre las de Marte y Júpiter en el llamado anillo principal de asteroides. El más grande de todos se llama Ceres y tiene poco más de 900 kilómetros de diámetro (la Tierra tiene 12756 kilómetros). Los astrónomos están convencidos que los meteoritos que caen a la Tierra (o a otros planetas) proceden en su inmensa mayoría de este cinturón de asteroides. Estos meteoritos al caer crean cráteres, los cuales, si son pequeños son borrados por la erosión terrestre. En la Luna, por ejemplo, al no haber atmósfera no hay erosión y los cráteres se conservan indefinidamente hasta que otros meteoritos los borren. En la Tierra es famoso el crater del desierto del Norte de Arizona (EE.UU.) llamado Meteor Crater que tiene 1200 metros de diámetro, 250 de profundidad y se creó hace entre 20.000 y 30.000 años aproximadamente. Los asteroides son el escenario principal del cuento de Antoine de Saint-Exupéry titulado “El principito” en el que un pequeño personaje vive en un asteroide (exactamente el B 612) con 3 pequeños volcanes (2 en actividad y 1 extinguido) que deshollina cuidadosamente y usa para calentar su desayuno.

Si comparamos el día y el año de los planetas del sistema solar con respecto al de la Tierra obtenemos los siguientes datos aproximados de cada planeta, indicando primero su día y luego su año (ver datos más exactos en la siguiente tabla): Mercurio (59 días, 3 meses), Venus (243 días, 7 meses), Marte (1 día, 1 año y 10.5 meses), Júpiter (10 horas, 12 años), Saturno (10 horas, 29.5 años), Urano (1 día, 84 años), Neptuno (1 día, 165 años) y Plutón (6 días, 248 años). Observe las curiosidades que se plantean: por ejemplo, en Mercurio veriamos un atardecer cada 59 dias (terrestres), mientras que en Saturno hay una puesta de Sol cada 10 horas.

La siguiente tabla contiene algunos datos físicos de los planetas del Sistema Solar. Hay que tener en cuenta que:

UA es la Unidad Astronómica y equivale a la distancia media de la Tierra al Sol (149,6 millones de Kilómetros).

Inclinación orbital: Es la inclinación de la órbita de cada planeta con respecto a la Eclíptica (órbita de la Tierra).

Periodo de rotación: Corresponde a la duración de 1 día (1 vuelta sobre su eje) en ese planeta medido en días de la Tierra. Un día de la Tierra dura 23 horas 56 minutos. Los 4 minutos que faltan para las 24 horas (del alba al alba) se deben al movimiento de traslación de la Tierra alrededor del Sol.

Periodo de revolución: Corresponde a la duración de 1 año (1 vuelta al Sol) en ese planeta medido en días o años de la Tierra.

Radio: No tiene que ser fijo, pues, por ejemplo la Tierra no es una esfera perfecta, sino que está ensanchada en el ecuador. Compárese con el radio del Sol, que es de 695.990 Km.


No hay comentarios.:

Publicar un comentario